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In this paper a new discretization concept is proposed which generates 
uniform lower and upper bounds of the solution of the Thomas-Fermi 
equation. Their convexity is used to modify the occurring nonlinearity 
such that the right-hand side originally given is bounded from below 
and from above by piecewise tangents and secants, respectively. 
c 1992 Academic Press. Inc. 

1. INTRODUCTION 

The Thomas-Fermi equation plays an important role in 
mathematical physics. Various authors (see [2-6, 10, 111, 
e.g.) have investigated the analysis of the problem and have 
proposed numerical methods approximating the solution. 
Especially monotone iteration techniques play an impor- 
tant role to derive upper and lower bounds, respectively, of 
the solution. In the fundamental paper [6] the original 
problem has been generalized and the existence of its 
solution has been shown by monotonically convergent 
algorithms which produce lower and upper bounds of 
the wanted solution. However, the implementation on 
computers additionally requires numerical integrations and 
spline interpolations to perform the iterations which base 
on some specific fixed point iteration where the related 
linear part has a known representation of its solution by 
means of modified Bessel functions. 

The aim of the present paper consists in proposing a 
new algorithm for generating bounds for the solution of 
the Thomas-Fermi equation. This algorithm rests on an 
extension of the concept of monotone discretization recently 
proposed (see [ 8, 91). This includes firstly a modification of 
the original monotone discretization method to the weakly 
singular case occurring in the Thomas-Fermi equation and, 
second, the use of convexity information w.r.t. the solution 
to simplify the construction of the bounding operators 
used in monotone discretization techniques. The method 
proposed here bases on piecewise simplifications of the 
nonlinearity. Thus, this technique can be implemented 

on computers without using special functions as Bessel 
functions. Furthermore, no numerical integration is needed 
to realize the method because the occurring integrals can be 
calculated explicitly. The problem can be reduced to a 
sequence of tridiagonal linear systems of finite dimension. 

In this paper we deal with the original Thomas-Fermi 
equation 

- 112 y”=x y 312 

with the boundary condition 

(1) 

Y(O) = 1, y(u) = 0. (2) 

Here a denotes some given positive constant. The boundary 
value problem (1) (2) occurs in the investigation of 
potentials and charge densities of ionized atoms. Existence, 
uniqueness and smoothness properties of the solution of (1 ), 
(2) have been shown in various publications (see [2, 6, 111, 
e.g.). 

The idea of the method presented here rests on a simpli- 
fication of the nonlinear part of the differential equation (1) 
in such a way that: 

l the related auxiliary problems can be solved expli- 
citly in some fixed finite dimensional space, 

l the solution of the auxiliary problems forms a lower 
and an upper solution, respectively, of the original problem 
(I), (2). 

2. MONOTONE DISCRETIZATION 
OF THE PROBLEM 

In the sequel we base our approach on the weak formula- 
tion of the original problem which is an appropriate tool for 
handling discontinuous right-hand sides generated in the 
monotone discretization technique. 

Let us abbreviate Q := (0, a) the given interval of the 
boundary value problem (l), (2). The Sobolev space H ‘(Sz) 
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denotes the set of all functions being quadratically inte- 
grable and possessing a quadratically integrable generalized 
first-order derivative, i.e., 

Let U denote the linear manifold defined by 

u:= {uEH’(Q):u(O)= 1, u(a)=O}. 

u”(x) dx + 1 u’~(x) dx < +m 
R 

equipped with the norm 

Ilull := j, u*(x) dx + s, uf2(x) dx]l’*. 

We define operators L, G: U -+ V by 

(Lu,v) :={ u’(x)v’(x)dx forany UEU, UEHA(Q) 
R 

and 

(Gu, v> := jQx -“‘[u(x)]~ v(x) dx 

Here the generalized derivative u’ of the function u is defined for any u E U, 
via the identity 

v e H;(Q). 

There [ .] + denotes the positive part, i.e., 

!*, u(x) v’(x) dx = -s, u’(x) v(x) dx 
[t] + :=max{O, t} forany tER 

for any v E C’(D) with v(0) = v(a) = 0. (3) 
and ( ., . ) is the dual pairing. The operator L + G has the 

Especially HA(Q) denotes the subspace of H’(Q) formed by following properties’ 
those functions having vanishing traces at the boundary l ((L+G)u-(L+G)v,u-u)>y (lu-vl[* for any 
points, i.e., u, v E U with some y > 0; 

H#i?) := {uEH’(Q):u(O)=u(a)=O}. 
l (L+G)ud(L+G)v,u,vEUimpliesu<v. 

Throughout this paper “<” denotes the natural semi- 
Throughout this paper we use in HA(Q) the same norm as ordering in H’(Q) and the related dual semi-ordering in V, 

in H’(Q). An equivalent norm in H;(Q) often applied in the i.e., 
literature is given by 

u, v~H’(i-2): u<v-=u(x)<v(x) a.e. in Sz 

II,ull, := [ jQ uf2(x) dx]“2. and 

A mapping I: HA(Q) + R is called a linear functional on 
I,fEH-'(Q):I~fo(I,v)~(f,v) 

HA(Q) if forany v~H~(O)v>0, 

(I,au+~z)=a(l,u)+~(l,z> respectively. 

forany u,zeHA(Q), cc,j?~R 
The first property is the coerciveness of L + G and the 

second one characterizes L + G to be of a monotone type. 

holds. Here (I, u) denotes the value of the functional 1 at 
The operator L- ’ has good smoothing properties in the 

sense that 
the argument u. The linear functional 1 is called continuous 
if some constant c > 0 exists such that LY=f,fEL2P) implies y E H2(Q). (5) 

I(l> u>l G c Ilull for any UE HA(Q) Here L2(f2) and H2(Q) denote the Lebesgue space of 

holds. The set of all continuous linear functionals on HA(Q) 
quadratically integrable functions and the Sobolev space 

equipped with the norm 
with quadratically integrable generalized derivatives up to 
the second order, respectively. The relationship (5) is a direct 

(13 u> 
consequence of (3) and of the definition of the operator L. 

Ilull * := 
utXgLO Ilull (4) Using the continuous embedding H*(Q) 4 C’(D) can 

restrict us to the manifold W := Un C ‘(8) and we obtain 
the operator equation 

is denoted by H - l(Q) the so-called dual space to HA(Q). In 
the sequel we abbreviate V := H-‘(Q). YEW (L+G)y=O (6) 



Here denote [t] ~ := min{O, t}, t E R, and ui := u(x,), 
ui :=u’(x,), i= l(l)N. 
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as the weak formulation related to the originally given 
boundary value problem (1 ), (2). 

The classical solution of (1) (2) which has been shown to 
exist in [6], e.g., forms a solution of the weak formulation 
also. Because the operator L + G is coercive, this solution is 
unique. Thus, the given two-point boundary value problem 
(l), (2) is equivalent to the operator equation (6). 

The main idea of monotone discretization consists in 
reducing problem (6) to appropriate auxiliary problems 
which are solvable explicitly with piecewise analytical 
representations. Let us select some grid {xi} ;“= 0 on Q, i.e., 

A first proposal for a piecewise linearization has been 
made in [13]. In the present paper we concentrate our 
attention to the special kind of weakly singular boundary 
value problems and to algorithmic realizations. Further- 
more, we investigate the convergence of the proposed 
monotone discretization method for h + + 0. 

The existence and the local uniqueness of solution _yh, jh 
of the auxiliary problems (8) for sufficiently small h > 0 can 
be shown by the technique used in [8]. 

o=x,<x,< ... <x,p,<x,=a. THEOREM 1. Let _yh, jhe W denote solutions of the 
auxiliary problems (8). Then the estimations 

We denote hi := xi - xi- r, Qi:=(xi-,,x;), i=l(l)iV.The 
mesh size h of the grid is given by 

h := max h,. 
I<i<N 

We select a finite dimensional subspace V, c V’ by 

holdfor the solution y of the original problem (6). 

ProoJ The definitions (9), (10) of the bounding oper- 
ators Gh, G, result in 

with 

[ii(x) := y2(xi-x)‘. 
L 

XEQi, 

otherwise, 

i = l(1) N, j = 0, 1. Thus, the functions u E V,, can be repre- 
sented by 

G,u>o, G,M>O for any u E W. 

With (8) and with the definition of the operator L this leads 
to the convexity of the functions y,,, Jh. Because the 
functions [ .] + and ( .)3’2 are convex- and monotone non- 
decreasing the superpositions [yh]3/2, [j,]? are convex 
functions, also. Now, using (9) we obtain 

u(x)= 5 i w&y(x) a.e. in Q (7) 
i=l ,=o 

GhyhaGyh. (11) 

Because of [jh]3j2aOand [j,]? (a)=0 we have 

with some w~ER, i= l(l)N,j=O, 1. 
In monotone discretization (compare [S, 91) we replace 

the nonlinear operator G: U -+ V by appropriate bounding 
operators Gh, 15,: W c U -+ Vh c V, respectively. Then the 
auxiliary problems 

With the convexity of [j,]? this leads to 

yh,jhE w (L+Gh)yh=O, (L+Gh)jh=o, (8) 

are to be solved instead of (6). We define 

(bh13j2)‘G” on Q. 

Thus, the identity 

[chu](x) :=xp’/2([ui]3j2- [~J:‘-;~~-J:’ (x,-x)) 
I 

(9) 

and 

[chyh](x)=x~1’2([yi]3/2- g[ji]y [j,!]- 

(x,-x)), XEQi 

[C,u](x) :=x-“‘([u,]y- $ [u,]‘i2 [u(]-(xi-x)), 
(10) 

holds with ji = jh(xi), j,! = ji(xi). Because of the known 
structure of the solution jh (compare Section 3) its first 
derivative jj, is explicitly available and has not to be 
approximated numerically. 

Using the convexity Of [ yh] y’) now, we obtain 

for any x E Qi. 
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With (8), (11) this leads to 

(L+G)_y,6(L+G,)_y,=O=(L+G)y 

=(L+G,)j,<(L+G)j,. 

Because the operator L + G is of monotone kind this 
completes the proof. 

Remark. Basing on the monotonicity ofy,, jh shown in 
the proof above one can select 

[GhU](X) :=x-“*[uiJy, XESZ; (12) 

[G,u](x) := X-quJy, XESZi (13) 

as simple bounding operators approximating G with the 
order O(h). 

Next, we investigate the order of approximation of the 
solution y of (6) by yh, jh. 

THEOREM 2. There exists some c > 0 such that 

Ib-j’hII dCh* 

holds for sufficiently small h > 0. 

Proof From (8) we obtain 

o=(L+c,)_y,=(L+G)_y,+(G,-G)_y,. 

With (6) and the coercivity of the operator L+ G this 
results in 

lb-&II + Ii(Gh-G)&II*. (14) 

Here II. II * denotes the norm in V induced from H’(Q) 
defined by (4). The sequence {_yh} can be shown to be 
bounded (see [S], e.g.). Using (8), the smoothing property 
(5) of L-l, and the continuous embedding H’(Q) cs 
C I + “‘(a) (compare [I]), we obtain 

IjJz3 - &h)l G Clh”* for any <, vE!Si, i= l(l)N, 

with some c, > 0. Taking the definition (9) of G, into 
account and integrating by parts this leads to 

I<@,-G)j’h, u>l dc,h* llf-ll forany VEV 

with some c2 > 0. Thus, we have 

Il(c, - G)yh iI* d c,h2. 

Estimation (14) and the analogue result for the upper 
solution jh prove the statement of the theorem. 

581/98/l-3 

3. FINITE-DIMENSIONAL 
REPRESENTATION 

In this section we deal with the finite-dimensional 
representation of the solutions yh, jh of the auxiliary 
problem (8). Let G,,y, denote Gh,_yh or G,, jh, respec- 
tively. We abbreviate g ,, := G,, y,. Because of Gh: U+ V, 
we have g, E VA and due to (7) the function g, can be 
represented by 

gh(x)= ; i wJ!+). (15) 
i=l j=O 

On the other hand, the solution y, of (6) solves the linear 
problem 

Ly,+g,=o. (16) 

Now we take advantage of the linearity of the operator L 
and its relation to local boundary value problems. We 
define functions di, eii according to 

XEQi 
.XESZi., 
otherwise, 

i=O(l)N, 

$io(x) = {:(x3’* -x;!!,qL ,(x) - x;‘*&(x)), XEQ; 

7 otherwise, 

and 

xi+;0 - &(x5” - x;“, q4- l(X) -x;‘*&(x)), 

*i, = XE52; 
0 otherwise, 

i= l(l)N. 
From these definitions we obtain 

and 

-d;‘(x) = 0 a.e. in 52, 4i(xk)=sik (17) 

-*G(x) + i,(x) = 0 a.e. in 52, Il/ij(X,)=O. (18) 

Taking yi E R, i = 0( 1 )N, as parameters the superposition 
principle results in the representation 

Yh(l)=i~oYi~rO+ 5 i wijGg(x) (19) 
i=lJ=O 

of the solutions y, of the auxiliary problems (6). Here in,, 
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denote the coefficients of G,, y, with respect to the base {c,} 
of V,, according to (15), and y, = 1, y, = 0 are given by the 
boundary conditions (2). We obtain the remaining coef- 
ficients yi, i = l(1) N - 1, in (19) from the differentiability of 
y, in the inner grid points. Taking the supports of di, tiii into 
account this leads to 

“j-by + i w,‘Kj(xi- 0) 
J=o 

ui+1 -ui 

= hi+, 

+iw 1+ljll/:+lj(~i+~)9 (20) 
j=O 

i= l(1) N- 1. 
With (9) (lo), system (20) forms a nonlinear system for 

determining the coefficients yi, i = l(1) N - 1. We solve this 
recursively by the following modifications of Newton’s 
method: 

y;+’ -y;e, 

hi 
+([p:1~+~[y;l~(Yt+, -Y;NKo(xi-o) 

k+‘-Yf+l + w~,l//;l(x;-o)=yi+’ 
h if1 

+(cy”+,l:‘+; CY1+,1:/2 (yffl -Yf)) 

~~:+l,o~~i+~~+~k+l,l~:+l,l~~i+~~ (21) 

i=l(l)N-lwithy~fl=l,ykNfl=O,and 

or 

w;, = 4 [ yk] :” [y;“] ~ in the case G, = G, (22) 

w’f = CYW- CYL,13j 
II 

h, 
in the case G,, = Gh, (23) 

respectively. Problem (21) forms a system of linear equa- 
tions 

AkY k+‘=bk (24) 

for determining the new iterates yk+ ’ = (yf+ ‘)F=Cr’ E RN- ‘. 
Due to (21) the matrices A, = (a:.) and the vectors bk = (bf) 
are defined by 

-l/hi, j=j-1 

llhi+llhi+l+~f, j=i 

-l/hi+,, j=i+l 

0, otherwise, 

and 

bk = a: + l/h,> 
’ i 

i= 1, 

Lt i=2(1) N- 1, 

respectively, with 

The definitions of the functions di, rjio lead to 

$;o(x) = zx1/2 _ ; c2 ~~~‘“1 for any x E Sz;. 
I 

With the convexity of the function a(x) =x3j2, x>O and 
with the mean value theorem we obtain 

‘f+lo(x,-1+o)do, lj;o(xi - 0) 2 0. 

This results in af 2 0. Thus, the matrices A, are symmetric 
tridiagonal M-matrices. Therefore the linear system (24) 
can be solved efficiently by fast factorizations without 
pivoting. Furthermore, a discrete maximum principle holds 
and system (24) is stable w.r.t. perturbations. 

Let { _y:}, { j$} c U denote the sequences defined by 

Y:(x)= 2 Y54(x)+ ; i w”,‘hJ(x) (25) 
i=O i=l j=O 

withy”, r$, generated according to (21), (22), (23) and with 

wfo := [ yf]3jz. 

Then the following theorem (compare [S]) holds. 

THEOREM The sequences {_yf 1, (jf } generated due to the 
iteration (2 l )-(25 ) converge locally for sufficiently small 
h > 0 to _y,, , J,,, respectively. 

Remarks. l An iteration method for solving auxiliary 
problems (8) with bounding operators Gh according to (12) 
(13) can be realized in the same way as in the case (9), (10). 

l The derivative occurring in (22) can be replaced by 
means of the (19). This leads to the determination of wf, 
from the equation 

@I =tCyfl’!Z((yF-y:k,)/hi 

+ CY3’i 4%O(Xi) + 41 bxl(XJ). 



. The approach given above is also applicable to 
neutral atoms with a Bohr radius b which results in the 
boundary conditions 

Y(O) = 1, by’(b) - y(b) = 0 

instead of (2). The case of an isolated neutral atom charac- 
terized by 

Similar to (9), (10) we apply piecewise secants and piecewise 
tangents to define bounding operators. But, unlike in the 
case of the Thomas-Fermi equation here the solution u is 
concave and the superposition u3 neither is concave nor is 
convex. Thus, we use the piecewise linearizations to the 
function u itself. This results in the bounding operators 

Y(O) = 1, lim y(x) =0 
1[* +zc 

[G,u](x) :+- y-’ (x;-x)]3 (27) 
, + 

and 
requires one to estimate the asymptotic behaviour and 
cannot be handled directly by the proposed method. [Ghu](x):= [ui-u;(x,-x)]:, t-28) 

l The investigations given in this paper can be 
extended to the generalized Thomas-Fermi equation 

y” + (b/x) y’ = cxpyy, 

for any XEQ~. Now, the finite-dimensional eigenvalue 
problem can be given in the abstract form 

where b, c, p, and q are constants such that Y/l E %(Q)~ LY,=&,G~Y,~. (29) 

O<b<l, c > 0, P> -2, q>l 

as considered in [6] by using appropriate operators L, G. 
However, this leads to more complicated bases di, $iO, ll/il 
satisfying the related local boundary value problem (17) 
( 18). The non-polynomial splines considered in [ 121 can be 
used as bases in this case. 

This problem can be treated in an adapted linite-dimen- 
sional space. Because G, y for any y E HA(Q) are piecewise 
cubic polynomials we know the solutions y, of (29) to be 
polynomials of degree five. 

4. NUMERICAL SOLUTIONS 

Some of the underlying ideas such as monotone discret- 
ization by bounding operators and using convexity can be 
applied to other types of problems as well. In the case of 
generalized Emden-Fowler equations considered in [ 71, 
e.g., this approach leads to a sequence of finite-dimensional 
nonlinear eigenvalue problems. The related eigenfunctions 
are represented by piecewise cubic polynomials. It should be 
mentioned that unlike in [7] we concentrate our attention 
to the construction of an adapted discretization of the eigen- 
value problem. The generated finite-dimensional systems 
can be treated by a technique similar to [7], e.g. Here 
we applied some shooting method to solve the linite- 
dimensional problems. 

We realized the method of monotone discretization on an 
IBM PC in turbo Pascal. The systems (21), (22), (23) were 
solved by a fast Cholesky factorization. The following 
Tables I and II report the results obtained for different 
uniform grids with the second-order method (8)-( 10) and 
first-order method (8), (12) (13), respectively. We used the 

TABLE I 

yh(x) Y(X) dx) 
h=O.l h=0.025 h=0.025 h=O.l 

Let us consider the generalized Emden-Fowler equation 
(superlinear case, compare [ 71) 

y”(x) + ;ly3(x) = 0 in 52 := (0, l), 

Y(o)=Y(l)=o 

0.0 1 .ooooo 1.00000 1.00000 1 .ooooo 1.00000 
0.1 0.84923 0.84946 0.84947 0.84950 0.84979 

0.2 0.72692 0.72721 0.72723 0.72727 0.72766 

0.3 0.61896 0.61927 0.61929 0.61933 0.61977 

0.4 0.52000 0.52039 0.52041 0.52045 0.52090 

0.5 0.42725 0.42753 0.42755 0.42758 0.42802 

0.6 0.33843 0.33867 0.33869 0.33872 0.33912 
0.7 0.25218 0.25239 0.25240 0.25242 0.25277 

0.8 0.16749 0.16764 0.16765 0.16767 0.16794 

0.9 0.08360 0.08368 0.08369 0.08370 0.08387 
1.0 0.00000 0.00000 0.00000 0.00000 0.00000 

for any 24, u E HA(Q). (26) 

as an example. Related to this problem we define 

(Gu, u) :=s, [u(x)]: u(x) dx 
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TABLE II 

x 

0.0 1 .ooooo 1.00000 1.00000 1.00000 1.00000 

0.1 0.84891 0.84933 0.84947 0.84961 0.85003 

0.2 0.72641 0.72703 0.72723 0.72743 0.72804 

0.3 0.61837 0.61907 0.61929 0.61952 0.62020 

0.4 0.51948 0.52018 0.52041 0.52065 0.52133 

0.5 0.42668 0.42733 0.42755 0.42777 0.42841 

0.6 0.33792 0.33850 0.33869 0.33888 0.33944 

0.7 0.25178 0.25224 0.25240 0.25255 0.25301 

0.8 0.16721 0.16754 0.16765 0.16776 0.16808 

0.9 0.08346 0.08363 0.08369 0.08374 0.08391 

1.0 0.00000 0.00000 0.00000 0.00000 0.00000 

&(X1 
h=O.Ol h=0.0025 

Y(X) #h(l) 

h=0.0025 h=O.Ol 

TABLE III 

h 0.02 0.01 0.005 0.0025 

dh 3.73-5 9.43-6 2.43-6 6.OE-7 

Dh 3.73-3 1.9E-3 9.33-4 4.63-4 

TABLE IV 

h Ah due to (28) Ah due to (27) difference 

0.1 88.0498 97.528966 9.36E-0 

0.01 94.475750 94.566103 9.043-2 

0.001 94.535760 94.536652 8.923-4 

0.0001 94.536350 94.536358 8.00E-6 

TABLE V 

X Ydx) Y(X) 

0.1 0.099953 0.09961 
0.2 0.198497 0.19790 

0.3 0.288869 0.28879 

0.4 0.356025 0.35498 

0.5 0.381380 0.38025 

parameter a = 1 in both cases, but, we applied different step 
sizes to obtain results of appropriate accuracies. 

The solution y obtained with the proposed method 
coincides with the results given in [6]. In Table III we show 
the error of the enclosures realized with the second-order 
monotone discretization technique. 

Here dh and D, denote the maximal difference between 
upper and lower solutions in the grid points, i.e., 
max(j,-_y,), obtained by the methods (8), (9), (10) and 
(8), (12), (13), respectively. The numerical results show a 
good coincidence with the properties derived for the 
proposed method of monotone discretization. 

We remark that the iteration method given in Section 4 
converges very fast (compare [S]). Starting from y:(x)= 
1 - x/a, the wanted accuracy lo-’ was reached after three 
iterations. 

Finally, we report some numerical results obtained with 
the proposed method for the Emden-Fowler equation. 
With the scaling y’(O) = 1 as used in [7] we solved these 
problems for various stepsizes h > 0 on equidistributed grids 
by a shooting method. Our results are given in Table IV. 

The bounds converge quadratically as expected. Finally, 
we list the solution obtained with (27), (29) at selected 
x-values and we compare the results with the exact solution 
as given in [7] (see Table V). 
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